
高一数学下册知识点总结
总结是在某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而得出教训和一些规律性认识的一种书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,快快来写一份总结吧。那么总结应该包括什么内容呢?以下是小编帮大家整理的高一数学下册知识点总结,希望对大家有所帮助。
高一数学下册知识点总结1函数图象
(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象。C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的'每一组有序实数对x、y为坐标的点(x,y),均在C上。即记为C={P(x,y)|y=f(x),x∈A}图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。
(2)画法
A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来。
B、图象变换法
常用变换方法有三种,即平移变换、伸缩变换和对称变换
(3)作用:
直观的看出函数的性质;
利用数形结合的方法分析解题的思路。提高解题的速度。
高一数学下册知识点总结2函数图象
(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)|y=f(x),x∈A}图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线多只有一个交点的若干条曲线或离散点组成。
(2)画法
A、描点法:
根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的.点P(x,y),后用平滑的曲线将这些点连接起来.
B、图象变换法:
常用变换方法有三种,即平移变换、伸缩变换和对称变换
(3)作用:
1、直观的看出函数的性质;
2、利用数形结合的方法分析解题的思路。提高解题的速度。
高一数学下册知识点总结31、棱柱
棱柱的定义:两面平行,其余为四边形,每两个四边形的公共边平行,这些几何形称为棱柱。
棱柱的性质
(1)侧边相等,侧边平行四边形;
(2)两个底面与平行于底面的截面为全等多边形;
(3)两个不相邻边缘的截面(对角)为平行四边形。
2、棱锥
棱锥的定义:一个面是多边形,另一个面是公共顶点的三角形,这些面的几何称为棱锥。
棱锥性质:
(1)边缘交点。侧面是三角形;
(2)平行于底部的'截面与底部的多边形相似。其面积比等于截得棱锥高于远棱锥高的平方。
3、正棱锥
正棱锥的定义:如果一个棱锥的底面是正多边形在底面的射影是底面的中心,则称为正棱锥。
正棱锥的性质:
(1)各侧棱交于一点,相等,各侧均为等腰三角形。各等腰三角形底边高度相等,称为正棱锥斜高。
(3)多个特殊的直角三角形。
a、相邻两侧边缘垂直的正三棱锥,顶点在底部的射影可以通过三垂线定理为底部三角形的垂心。
b、四面体中有三对异面直线。如果两对垂直,第三对可以垂直。底部顶部的射影是底部三角形的垂心。
高一数学下册知识点总结41、对数的概念
(1)对数的定义:
如果ax=N(a>0且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,其中a叫做对数的底数,N叫做真数。当a=10时叫常用对数。记作x=lg_N,当a=e时叫自然对数,记作x=ln_N.
(2)对数的常用关系式(a,b,c,d均大于0且不等于1):
①loga1=0.
②logaa=1.
③对数恒等式:alogaN=N.
二、解题方法
1、在运用性质logaMn=nlogaM时,要特别注意条件,在无M>0的条件下应为logaMn=nloga|M|(n∈N*,且n为偶数)。
2、对数值取正、负值的规律:
当a>1且b>1,或0
当a>1且0
3、对数函数的定义域及单调性:
在对数式中,真数必须大于0,所以对数函数y=logax的定义域应为{x|x>0}。对数函数的单调性和a的值有关,因而,在研究对数函数的单调性时,要按0
4、对数式的化简与求值的常用思路
(1)先利用幂的运算把底数或真数进行变形,化成分数指数幂的`形式,使幂的底数最简,然后正用对数运算法则化简合并。
(2)先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算。
高一数学下册知识点总结51.多面体的结构特征
(1)棱柱的上下底面平行,侧棱都平行且长度相等,上底面和下底面是全等的多边形.
(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.
(3)棱台可由平行于棱锥底面的平面截棱锥得到,其上下底面的两个多边形相似.
2.旋转体的结构特征
(1)圆柱可以由矩形绕其一边所在直线旋转得到.
(2)圆锥可以由直角三角形绕其一条直角边所在直线旋转得到.
(3)圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上下底中点的连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到.
(4)球可以由半圆或圆绕其直径旋转得到.
3.空间几何体的三视图
空间几何体的三视图是用正投影得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括主视图、左视图、俯视图.
4.空间几何体的'直观图
(1)在已知图形中建立直角坐标系xOy.画直观图时,它们分别对应x轴和y轴,两轴交于点O,使xOy=45,它们确定的平面表示水平平面;
(2)已知图形中平行于x轴 ……此处隐藏1784个字……间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
5.映射
一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的.元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)”
对于映射f:A→B来说,则应满足:
(1)函数A中的每一个元素,在函数B中都有象,并且象是的;
(2)函数A中不同的元素,在函数B中对应的象可以是同一个;
(3)不要求函数B中的每一个元素在函数A中都有原象。
6.高中数学函数之分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
补充:复合函数
如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。
高一数学下册知识点总结11对a的取值为非零有理数,有必要分几种情况来讨论各自的特点:
首先,我们知道如果a=p/q,q和p都是整数,然后x^(p/q)=q次根号(x如果q是奇数,函数的定义域是R,假如q是偶数,函数的定义域是[0,∞)。当指数n为负整数时,设置a=—k,则x=1/(x^k),显然x≠0.函数的定义域是(—∞,0)∪(0,∞)。因此,我们可以看到x的限制来自两点。首先,它可以作为分母而不是0。首先,它可能在偶尔的根号下不是负数,因此我们可以知道:
排除0和负数的可能性,即对x>0.a可以是任何实数;
排除为0的可能性,即对x<0和x>0的所有实数,q不能是偶数;
排除为负数的可能性,即所有x大于等于0的实数,a不能是负数。
综上所述,当a是不同的值时,功率函数的定义域的不同情况如下:如果a是任函数的定义域大于0;
如果a为负,则x不能为0,但此时函数的定义域必须根据q的奇偶性来确定,即如果q是偶数,则x不能小于0,则函数的定义域大于0;如果q是奇数,则函数的定义域不等于0。
当x大于0时,函数的值域总是大于0。
x小于0时,只有同时q为奇数,函数值域为非零实数。
只有a为正数,0才能进入函数的`值域。
由于x大于0对a的任意取值都有意义,下面给出了第一象限中的幂函数。
(1)所有图形都通过(1,1)。
(2)当a大于0时,幂函数单调递增,而a小于0时,幂函数单调递减函数。
(3)当a大于1时,幂函数图形凹陷;当a小于1大于0时,幂函数图形凸出。
(4)当a小于0时,a图形倾斜度越小,越大。
(5)a大于0,函数过(0,0);a函数小于0,但(0,0)点。
(6)显然,功率函数是无限的。
拓展阅读:高一数学学习方法技能
1.课后及时回忆
如果等到课堂内容几乎被遗忘,几乎等于重新学习,所以课堂学习的新知识必须及时复习,可以单独回忆,或者几个人可以互相激励,补充记忆。一般按照教师板书的大纲和要领进行,也可以按照教材的大纲结构进行,从主题到关键内容,再到例细节,逐步复习。在复习理笔记也是一种有效的复习方法,在复习过程中要不失时机地整理笔记。
2.定期重复巩固
即使复习的内容还是要定期巩固,复习的次数也要随着时间的增加而逐渐减少,间隔也可以逐渐延长。当天可以巩固新知识,每周总结,每月分阶段总结,期中期末全面系统的学期复习。从内容上看,每节课的知识都要立即复习,每个单元都要整理知识,每章都要总结知识。相关知识必须串联在一起,形成知识网络,全面把握知识和方法。
科学合理的安排
复习一般可分为集中复习和分散复习。实验表明,除特殊情况外,分散复习的效果优于集中复习。分散复习,可以适当分类需要记住的材料,交替学习、娱乐或休息,以免单调使用某种思维方式,形成疲劳。分散复习还应结合各自的认知水平和记忆材料的特点,掌握重复次数和间隔时间,不是间隔时间越长越好,而是适合自己的复习规则。
高一数学下册知识点总结121、函数的基本概念
(1)函数的定义:设A、B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A。
(2)函数的.定义域、值域
在函数y=f(x),x∈A中,x叫自变量,x的取值范围A叫做定义域,与x的值对应的y值叫函数值,函数值的集合{f(x)|x∈A}叫值域。值域是集合B的子集。
(3)函数的三要素:定义域、值域和对应关系。
(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据。
2、函数的三种表示方法
表示函数的常用方法有:解析法、列表法、图象法。
3、映射的概念
一般地,设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。
注意:
一个方法
求复合函数y=f(t),t=q(x)的定义域的方法:
若y=f(t)的定义域为(a,b),则解不等式得a
两个防范
(1)解决函数问题,必须优先考虑函数的定义域。
(2)用换元法解题时,应注意换元前后的等价性。
三个要素
函数的三要素是:定义域、值域和对应关系。值域是由函数的定义域和对应关系所确定的两个函数的定义域和对应关系完全一致时,则认为两个函数相等。函数是特殊的映射,映射f:A→B的三要素是两个集合A、B和对应关系f。
高一数学下册知识点总结13本节主要包括函数的模型、函数的.应用等知识点。主要是理解函数解应用题的一般步骤灵活利用函数解答实际应用题。
1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。
2、用函数解应用题的基本步骤是:
(1)阅读并且理解题意。(关键是数据、字母的实际意义);
(2)设量建模;
(3)求解函数模型;
(4)简要回答实际问题。
误区提醒
1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。
2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。



