一元一次方程数学教案

时间:2025-11-01 16:52:09
一元一次方程数学教案

一元一次方程数学教案

作为一位杰出的教职工,通常需要准备好一份教案,教案是教材及大纲与课堂教学的纽带和桥梁。优秀的教案都具备一些什么特点呢?以下是小编帮大家整理的一元一次方程数学教案,希望能够帮助到大家。

一元一次方程数学教案1

教学目标:

1、知识与技能:会解含分母的一元一次方程,掌握解一元一次方程的基本步骤和方法,能根据方程的特点灵活地选择解法。

2、过程与方法:经历一元一次方程一般解法的探究过程,理解等式基本性质在解方程中的作用,学会通过观察,结合方程的特点选择合理的思考方向进行新知识探索。

3、情感、态度与价值观:通过尝试从不同角度寻求解决问题的方法,体会解决问题策略的多样性;在解一元一次放的过程中,体验“化归”的思想。

教学重难点:

重点:解一元一次方程的基本步骤和方法。

难点:含有分母的一元一次方程的解题方法。

教学过程:

一、新课导入:

请同学们和老师一起解方程:

并回答:解一元一次方程的一般步骤和最终的目的是什么?

二、讲授新课

请给同学们介绍纸草书(P95)。

问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.试问这个

数是多少?

并引入让同学运用设未知数的方法,列出相应的方程。

并回答:这个方程和我们以前学习的`方程有什么不同?

同学们和老师一起完成解上述方程,并引入去分母。

例1、

例2、

活动:同学们,解一元一次方程的步骤有哪些?要注意哪些?

看一看你会不会错:

(1)解方程:

(2)解方程:

典型例题:解方程:

想一想:去分母时要注意什么问题?

(1)方程两边每一项都要乘以各分母的最小公倍数

(2)去分母后如分子中含有两项,应将该分子添上括号

选一选:

练一练:当m为何值时,整式和的值相等?

议一议:如何解方程:

注意区别:

1、把分母中的小数化为整数是利用分数的基本性质,是对单一的一个分数的分子分母同乘或除以一个不为0的数,而不是对于整个方程的左右两边同乘或除以一个不为0的数。

2、而去分母则是根据等式性质2,对方程的左右两边同乘或除以一个不为0的数,而不是对于一个单一的分数。

课堂小结:

(1)怎样去分母?应在方程的左右两边都乘以各分母的最小公倍数。

有没有疑问:不是最小公倍数行不行?

(2)去分母的依据是什么?

等式性质2

(3)去分母的注意点是什么?

1、去分母时等式两边各项都要乘以最小公倍数,不可以漏乘。

2、如果分子是含有未知数的代数式,其分子为一个整体应加括号。

(4)解一元一次方程的一般步骤:

布置作业:P98,习题3.3第3题

补充作业:解方程:

(1)

(2)

板书设计:

教学反思:

一元一次方程数学教案2

知识技能

会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。

数学思考

1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。

2.通过一元一次方程的学习,体会方程模型思想和化归思想。

解决问题

能在具体情境中从数学角度和方法解决问题,发展应用意识。

经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。

情感态度

经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。

教学重点

建立方程解决实际问题,会通过移项解 “ax+b=cx+d”类型的一元一次方程。

教学难点

分析实际问题中的相等关系,列出方程。

教学过程

活动一 知识回顾

解下列方程:

1. 3x+1=4

2. x-2=3

3. 2x+0.5x=-10

4. 3x-7x=2

提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?

教师:前面我们学习了简单的.一元一次方程的解法,下面请大家解下列方程。

出示问题(幻灯片)。

学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。

教师提问:(略)

教师追问:变形的依据是什么?

学生独立思考、回答交流。

本次活动中教师关注:

(1)学生能否准确理解运用等式性质和合并同列项求解方程。

(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。

通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。

活动二 问题探究

问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?

教师:出示问题(投影片)

提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?

(学生尝试提问)

学生:读题,审题,独立思考,讨论交流。

1.找出问题中的已知数和已知条件。(独立回答)

2.设未知数:设这个班有x名学生。

3.列代数式:x参与运算,探索运算关系,表示相关量。(讨论、回答、交流)

4.找相等关系:

这批书的总数是一个定值,表示它的两个等式相等.(学生回答,教师追问)

5.列方程:3x+20=4x-25(1)

总结提问:通过列方程解决实际问题分析时,要经历那些步骤?书写时呢?

教师提问1:这个方程与我们前面解过的方程有什么不同?

学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25).

教师提问2:怎样才能使它向x=a的形式转化呢?

学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20.

3x-4x=-2 ……此处隐藏15264个字……思维品质。此处渗透着函数、不等式和分类讨论的思想,为后面学习实际问题提供了实践经验。

6、反馈练习

一家游泳馆每年6~8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元,讨论并回答:

(1)什么情况下,购会员证与不购证付相同的钱?

(2)什么情况下,购会员证比不购证更合算?

(3)什么情况下,不购会员证比购证更合算?

适时的反馈练习,以加深学生对这一知识的理解,逐步完善自己的知识结构。

(四)教学小结

学生分组小结“本课学到了什么”,各组发言交流体验、教师总结:

五、设计说明

七年级学生的年龄特征决定了他们好奇心强,思想活跃、求知心切。因此我从“以人为本”的理念出发,依据数学的工具性和人文性等特点,在整个教学活动中始终关注学生的发展,培养学生的创新精神与创新能力。

(一)充分尊重学生的主体地位

发挥学生的主体作用,坚持让学生自主探索、合作交流,展示学生的思维过程。

(二)树立方程建模思想

突出解释与应用,渗透函数、不等式、分类讨论等数学思想和方法,培养学生应用数学的意识。

(三)注重对学习过程与方法的评价

关注学生参与数学活动的热情,与他人合作的态度,以及独立地分析问题、解决问题的能力,力争让不同的人在数学上得到不同的发展。

(1)某种商品因换季打折出售,如果按定价的七五折出售将赔25元;而按定价的九折出售将赚20元。问这种商品的定价为多少元?

(2)某商店为了促销A牌高级洗衣机,规定在元旦那天购买该机可以分两期付款,在购买时先付一笔款,余下部分及它的利息(年利率为5、6%)在明年的元旦付清,该洗衣机售价是每台8224元,若两次付款相同,问每次应付款多少元?

(3)工厂甲、乙两车间去年计划共完成税利720万元,结果甲车间完成了计划的115%,乙车间完成了计划的110%,两车间共完成税利812万元,求去年两个车间各超额完成税利多少万元?

(4)一辆汽车用40千米/时的速度由甲地驶向乙地,车行3小时后,因遇雨平均速度被迫每小时减少10千米,结果到达乙地时比预计的时间晚了45分钟,求甲、乙两地间的距离。

(5)甲、乙两人合办一小型服装厂,并协议按照投资额的比例多少分配所得利润,已知甲与乙投资比例为3∶4,第一年共获利30800元,问甲、乙两人可获利润多少元?

(6)有人问老师班级有多少名学生时,老师说:“一半学生在学数学,四分之一学生在学音乐,七分之一的学生在读外语,还剩六名学生在操场踢球。”你知道这个班有多少名学生吗?

(7)某人10时10分离家去赶11时整的火车,已知他家离车站10千米,他离家后先以3千米/时的速度走了5分钟,然后乘公共汽车去车站,问公共汽车每小时至少走多少千米才能不误火车?

综合运用:

1、某市居民生活用电基本价格是每度0.40元,若每月用电量超过a度,超出部分按基本电价的70%收费。

(1)某户五月份用电84度,共交电费30.72元,求a;

(2)若该户六月份的电费平均为每度0.36元,求六月份共用电多少度?应交电费多少元?

2、为了鼓励节约用水,市政府对自来水的收费标准作如下规定:每月每户不超过10吨部分,按0.45元/吨收费;超过10吨而不超过20吨部分,按0.80元/吨收费;超过20吨部分,按1、5元/吨收费。现已知李老师家六月份缴水费14元,问李老师家六月份用水多少吨?

3、一支自行车队进行训练,训练时所有队员都以35千米/时的速度前进。突然,有一名队员以45千米/时的速度独自行进,行进10千米后调转车头,仍以45千米/时的速度往回骑,直到与其他队员会合。你知道这名队员从离队到与队员重新会合,经过了多长时间吗?

4、有8名同学分别乘两辆轿车赶往火车站,其中一辆轿车在距离火车站15千米时出现故障,此时离火车停止检票时间还有42分,这时惟一可以利用的交通工具只有一辆轿车,连司机在内限乘5人,这辆小轿车的平均速度为60千米/时。这8名同学都能赶上火车吗?

拓广探索:

5、一家庭(父亲、母亲和孩子们)去某地旅游。甲旅行社说:“如父亲买全票一张,其余人可享受半价优惠。”乙旅行社说:“家庭旅行算集体票,按原价的优惠。”这两家旅行社的原价相同。你知道哪家旅行社更优惠吗?

一元一次方程数学教案14

教学内容一元一次方程

教学目标

1.熟悉利用等式的性质解一元一次方程的基本过程.

2.通过具体的例子,归纳移项法则

3.掌握解一元一次方程的.基本方法,能熟练求解一元一次方程(数字系数),能判别解的合理性.

教学重点

重点是移项法则

教学难点

重点是移项法则

教学流程

一元一次方程数学教案15

2.自主探索、合作交流:

先由学生独立思考求解,再小组合作交流,师生共同评价分析.

方法1:

解:方程两边都加上2,得5x-2+2=8+2

也就是 5x=8+2

合并同类项,得5x=10

所以,x=2

3.理性归纳、得出结论

(让学生通过观察、归纳,独立发现移项法则.)

比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于

5x-2=8 5x=8+2

即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项.

教学建议:关于移项法则,不应只强调记忆,更应强调理解.学生开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,可借助例题、练习题使相互逐步体会到移项的优越性).

方法2;

解:移项,得 5x=8+2

合并同类项,得5x=10

方程两边都除以5,得x=2

4.运用反思、拓展创新

[例1] 解下列方程:(1) 2x+6=1 (2) 3x+3=2x+7

教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的错误,然后组织学生进行讨论交流.

[例2] 解方程:

教学建议:①先放手让学生去做,学生可能采取多种方法,教学时,不要拘泥于教科书中的解法,只要学生的`解法合理,就应给予鼓励.

②在移项时,学生常会犯一些错误,如移项忘记变号等.这时,教士不要急于求成,而要引导学生反思自己的解题过程.必要时,可让学生利用等式的性质和移项法则两种方法解例1、例2中的方程,并将两者加以对照,进而使学生加深对移项法则的理解,并自觉地改正错误.

5.小结回顾: 学生谈本节课的收获与体会.师强调:移项法则.

6.布置作业: (略)

《一元一次方程数学教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式