
初中数学优秀教案
作为一名无私奉献的老师,就有可能用到教案,借助教案可以有效提升自己的教学能力。我们该怎么去写教案呢?以下是小编收集整理的初中数学优秀教案,仅供参考,大家一起来看看吧。
初中数学优秀教案1一、教学目的:
1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;
2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力。
二、重点、难点
1.教学重点:菱形的'两个判定方法。
2.教学难点:判定方法的证明方法及运用。
三、例题的意图分析
本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.
四、课堂引入
1.复习
(1)菱形的定义:一组邻边相等的平行四边形;
(2)菱形的性质1菱形的四条边都相等;性质2菱形的对角线互相平分,并且每条对角线平分一组对角;
(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)
2.问题
要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?
3.探究
(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?
通过演示,容易得到:
菱形判定方法1对角线互相垂直的平行四边形是菱形。
注意此方法包括两个条件:
(1)是一个平行四边形。
(2)两条对角线互相垂直。
初中数学优秀教案2教学目标:
1、通过学生自己动手画图,让学生体会轴对称、平移和旋转三者之间的联系,培养学生探究的精神。
2、让学生深刻体会对称思想的重要性,提高应用能力。
教学过程:
一、向学生展示生活中美丽的对称图形,并指出其是怎样的对称?(展示课件)
二、探究规律:
课前完成书本第6页:做一做、和第14页:做一做。(展示课件)
轴对称、平移和旋转是图形变换的三种最基本的形式。表面上它们是三件不相干的事,可经过反复轴对称,我们发现:
规律1:当对称轴两两互相平行的时候,经过偶数次的轴对称变换相当于实现一次伟大的平移变换,平移的方向与对称轴距离矢量和的方向一致,平移的距离恰好是对称轴距离的代数和的2倍;
若对称轴两两相交于同一点,经过偶数次的轴对称变换相当于实现一次伟大的旋转变换,旋转中心就是对称轴的交点,旋转方向就是对称轴交角矢量和的方向一致,旋转的角度恰好是对称轴交角的代数和的2倍。(难点)
规律2:一些图形经过轴对称、平移、旋转变换后的,图形的形状、大小与原图完全一样。这里的“完全一样”是一个非常好用的`性质,因为它意示着:对应线段、对应角、对应图形的周长、面积相等。
三、应用规律解题:(重点)(展示课件)
例1、已知:如图,点A和点D关于直线MN对称,点B和点C也关于直线MN对称,AC与BD相交于点O,且点0在直线MN上,请你写出尽可能多的结论。(至少写出8条)
例2、如图,在一个长为200米,宽为150米的长方形公园里,拟建三条宽都为C米的人行道,其余部分为绿化带,试问,绿化带面积是多少平方米?(列式即可)
例3、已知正方形ABCD和正方形AEFG有一个公共点A,点D、E分别在线段AD、 AB上。
(2)若将正方形AEFG绕点A按顺时针方向旋转,连结DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等。并以图2为例说明理由。
解答:连结BE,
因为在正方形ABCD和正方形AEFG中,
AD=AB; AG=AE;
所以在旋转过程中,
线段AD对应线段AB;
线段AG对应线段AE;
则线段DG对应线段BE;
因此:BE=DG。
练习1、如图所示,请你用三种方法,把左边的小正方形分别移到右边的三个图形中,使它成为轴对称图形。
练习2、如图所示,已知AE∥DF,BE∥CF,AD∥BC,AD=BC且AB⊥BC,AB=3,AD=4。求多边形AEBCFD的面积。
练习3、如图,将一个扇形(∠AOB=90°)平移到一个长方形上,恰好OCDE为正方形,若正方形边长为1,则图中阴影部分的面积为多少?
练习4、如图所示,点O是边长为a的正方形ABCD的中心,将一块半经足够长,圆心角∠EOF=90°的扇形纸板的圆心放在点O处,并将纸板绕点O旋转。求正方形ABCD的边被纸板覆盖部分的长度和被纸板覆盖部分的面积。
四、小结:
三种图形变换的联系和两个规律及其应用。
五、作业:
1、请同学们设计符合下列要求的图形
(1) 使它是中心对称图形,又是轴对称图形;
(2) 使它是中心对称图形,但不是轴对称图形;
2、预习下一章内容,尝试用对称的思想分析平行四边形的性质。
六、课后反思:
本节教学前,经备课组老师建议,取消了规律1的探索,补充了下面的一道开放式探索题:在正方形的瓷砖面上画花纹,要求将砖面分成4部分,每部分形状、大小完全一样,请作出你的设计。 学生设计出12种的方案,并用对称的思想加以归类总结,取得了很好的效果。但作为一堂“指导----自主----合作”的教学模式,老师安排的内容是否太多,学生自主学习放到课前,该如何监控等问题还有待进一步探索。
初中数学优秀教案3教学目标:
1、知识与技能:使学生经历相似多边形概念的形成过程,了解相似多边形的定义,并能根据定义判断两个多边形是否相似。
2、过程与方法:在探索相似多边形本质特征的过程中,进一步发展学生归纳、类比、反思、交流等方面的能力,体会反例的作用。
3、情感态度与价值观:通过观察、推断得到数学猜想、获得数学结论的过程,体验数学活动充满了探索性和创造性。
教学重点:探索相似多边形的定义过程,以及用定义去判断两个多边形是否相似。
教学难点:探索相似多边形的定义过程。
教学过程:
……此处隐藏18240个字……,了解二元一次方程的解的不唯一性和相关性。
3、通过学练结合,以游戏的形式让学生及时巩固所学知识。
【教学过程】
一、创设情境导入新课
1、一个数的3倍比这个数大6,这个数是多少?
2、写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?
思考:这个问题中,有几个未知数?能列一元一次方程求解吗?
如果设黄卡取x张,蓝卡取y张,你能列出方程吗?
3、在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米。如果设轿车的速度是a千米/时,卡车的速度是b千米/时,你能列出怎样的方程?
二、师生互动探索新知
1、推陈出新发现新知
引导学生观察所列的方程:5x?2y?22,2a?3b?20,这两个方程有哪些共同特征?这些特征与一元一次方程比较,哪些是相同的,哪些是不同的?你能给它们取个名字吗?
(板书:二元一次方程)
根据它们的共同特征,你认为怎样的方程叫做二元一次方程?(二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)
2、小试牛刀巩固新知
判断下列各式是不是二元一次方程
(1)x2?y?0(2)12a?b?2b?0(3)y?x(4)x??123y
3、师生互动再探新知
(1)什么是方程的解?(使方程两边的值相等的未知数的值,叫做方程的解。)
(2)你能给二元一次方程的解下一个定义吗?(使二元一次方程两边的值相等的一对未
知数的值,叫做二元一次方程的一个解。)
?若未知数设为x,y,记做x?,若未知数设为a,b,记做
?y?
4、再试牛刀检验新知
(1)检验下列各组数是不是方程2a?3b?20的.解:(学生感悟二元一次方程解的不唯一性)
a?4a?5a?0a?100
b?3b??1020b??b?6033
(2)你能写出方程x-y=1的一个解吗?(再一次让学生感悟二元一次方程的解的不唯一性)
5、自我挑战三探新知
有3张写有相同数字的蓝卡和2张写有相同数字的黄卡,这五张卡片上的数字之和为10。设蓝卡上的数字为x,黄卡上的数字为y,根据题意列方程。3x?2y?10
请找出这个方程的一个解,并写出你得到这个解的过程。
学生在解二元一次方程的过程中体验和了解二元一次方程解的不唯一性。
6、动动笔头巩固新知
独立完成课本第81页课内练习2
三、你说我说清点收获
比较一元一次方程和二元一次方程的相同点和不同点
相同点:方程两边都是整式
含有未知数的项的次数都是一次
如何求一个二元一次方程的解
四、知识巩固
1、必答题
(1)填空题:若mxy?9x?3yn?1?7是关于x,y的二元一次方程,则m?n?x?2y?5变形正确的有2
10?xx?10①x?5?4y②x?10?4y③y?④y?44
(3x?7是方程2x?y?15的解。()(2)多选题:方程
y?1
x?7
(4)判断题:方程2x?y?15的解是。()y?1
2、抢答题
是方程2x?3y?5的一个解,求a的值。(1)已知x??2
y?a
(2)写出一个解为x?3的二元一次方程。
y?1
3、个人魅力题
写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?设黄卡取x张,蓝卡取y张,根据题意列方程:5x?2y?22你能完成这道题目吗?
五、布置作业
初中数学优秀教案15教学目标:
情意目标:培养学生团结协作的精神,体验探究成功的乐趣。
能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。
认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。
教学重点、难点
重点:等腰梯形性质的'探索;
难点:梯形中辅助线的添加。
教学课件:PowerPoint演示文稿
教学方法:启发法、
学习方法:讨论法、合作法、练习法
教学过程:
(一)导入
1、出示图片,说出每辆汽车车窗形状(投影)
2、板书课题:5梯形
3、练习:下列图形中哪些图形是梯形?(投影)
结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。
5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)
6、特殊梯形的分类:(投影)
(二)等腰梯形性质的探究
【探究性质一】
思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)
猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)
如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C
想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?
等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。
【操练】
(1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)
(2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)
【探究性质二】
如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)
如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)
等腰梯形性质:等腰梯形的两条对角线相等。
【探究性质三】
问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)
问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)
等腰梯形性质:同以底上的两个内角相等,对角线相等
(三)质疑反思、小结
让学生回顾本课教学内容,并提出尚存问题;
学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。



