《最小公倍数》教案

时间:2025-12-09 08:00:07
《最小公倍数》教案

《最小公倍数》教案

作为一无名无私奉献的教育工作者,时常要开展教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。那么什么样的教案才是好的呢?以下是小编整理的《最小公倍数》教案,希望能够帮助到大家。

《最小公倍数》教案1

一、教材简析

《最小公倍数》是人教版五年级下册第88-90页的教学内容,是在学生已经了解了倍数、因数以及公因数和最大公因数的基础上教学的。这一内容的学习为今后的通分学习打下基础,具有科学的、严密的逻辑性。

二、教学目标及教学重、难点

根据课程标准和教学内容并结合学生实际,我认为这节课要达到以下的教学目标:

2.理解算理并学会计算两个数的最小公倍数,通过对最小公倍数算理的探究,培养和发展学生的逻辑思维能力。

3.能运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。 教学重点: 公倍数与最小公倍数的概念建立。学会求两个数的最小公倍数。

教学难点:理解求两个数最小公倍数的算理,能运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。

三、设计理念

数学教育的出发点和归宿是学生熟悉的现实生活。让学生从生活中的问题到数学问题,从具体到抽象概念,从特殊关系到一般规则,逐步通过自己的发现去学习数学。进行集合思想和极限思想的渗透,感受数学化的简洁美。而探究性学习又是新一轮基础教育课程改革所倡导的学习方式。在教学中,通过创设情境,让学生自主发现问题,获得能力发展和深层次的情感体验,在得到抽象化的数学知识之后,及时应用到新的现实问题中去,从而渗透数学归纳思想,达到方法的多样化,个性化。学生构建数学概念的过程不能简单“告知”,通过引导,让学生亲自操作和体验,在解决问题中初步感知公倍数、最小公倍数的特点,明晰求最小公倍数的基本1.让学生通过具体的操作和交流活动,认识公倍数和最小公倍数。 思路,在富有生命活力的再创造过程中,主动建立概念,完成数形结合思想的渗透。

四、教学过程

(一)故事引入 感知概念

出示关于阿凡提的故事,巴依老爷说:“从八月一日起,我要连续出去收账3天才休息一天,我的账房先生要连续收账5天才可以休息一天,你们就在我们两人同时休息的时候来吧。我肯定给钱。”阿凡提动了动脑筋,便带长工们离开了。那么在这一个月里,阿凡提可以选哪些日子去呢?你会帮他们把这些日子找出来吗?”同桌讨论,学生合作在日历卡上找出巴依老爷和账房先生的共同休息日。

根据学生的汇报,教师完成板书:

巴依老爷的休息日 4、8、12、16、20、24、28 ??

账房先生的休息日 6、12、18、24、30 ??

他们共同休息日 12、24??

最早的休息日12

【设计意图】以故事的形式提出问题,让学生通过解决这个生动有趣的实际问题,获得对公倍数、最小公倍数概念内部结构特征的直接体验,积累数学活动的经验。学生在解决问题中初步感知公倍数、最小公倍数的特点,体会求最小公倍数的基本思路。这样,不仅激发了学生学习的兴趣,而且让学生感受到数学与生活是紧密联系的,体会到数学源于生活又高于生活的特点。

(二)加深理解 总结方法

1.公倍数和最小公倍数的概念教学

从“巴依老爷的休息日” 、“账房先生的休息日”、“他们共同休息日”、“最早的休息日”引出“4的倍数”、“6的倍数”、“4和6的公倍数”、 “4和6的最小公倍数”)。教师完成板书

巴依老爷的休息日(4的倍数) 4、8、12、16、20、24、28 账房先生的休息日(6的倍数) 6、12、18、24、30 ?? 他们共同休息日(4和6的公倍数) 12、24

最早的休息日 (4和6的最小公倍数) 12

【设计意图】怎样能让学生深刻理解最小公倍数的意义,是本节课的一个重点。学生构建数学概念的过程,决不能是简单“告知”的过程,以概念为本的学习需要经历一些经验性的活动过程。通过学生亲自操作和体验,在一种富有生命活力的再创造过程中,主动建立概念。完成数形结合思想的渗透。

2.用集合圈表示倍数、公倍数、最小公倍数。首先让学生用数学上的集合圈的形式表示4的倍数和6的'倍数。(课件出示集合圈)。然后利用课件使集合圈重叠一部分。给学生问题:如果这两个集合圈这样放在一起,相交的这一部分表示什么呢?(课件出示集合圈的动态过程)

【设计意图】根据弗赖登塔尔“数学是一项人类活动”的观点,从学生熟悉的生活开始,从生活中的问题到数学问题,从具体到抽象概念,从特殊关系到一般规则,逐步通过学生自己的发现去学习数学。进行集合思想和极限思想的渗透,感受数学化的简洁美。

(三)巩固运用

再求新法(本环节为两个数的最小公倍数的算理和方法引探是教学难点)

出示同学排队的题目:六(1)班同学在组织跳绳活动。班长说:“我们可以分成6人一组,也可以分成8人一组,都正好分完。这些学生至少有几人?” 问题出示后,给学生独立思考的时间,学生很快用列举法求出6和8的最小公倍数。然后我预设让学生寻找更简便的大数翻倍法,以及进一步探索用分解质因数的方法求最小公倍数,先把6和8分解质因数,观察质因数之间的关系,发现2是它们公有的质因数,而3和4是它们各自独有的质因数,从而突破难点。使学生理解用分解质因数求最小公倍数就是全部公有质因数和各自质因数的乘积。而短除法实际就是分解质因数的简便算法,并且引导学生发现,短除号左边的数就是它们的公有质因数,下面的数就是相对应数各自独有的质因数。在学生交流各自的方法后。我们可以把这些数在数轴上表示出来。上面表示6的倍数,下面表示8的倍数。所圈重合的点是6和8的公倍数。(教材中出现了数轴上表示倍数的方法,考虑到学生想不到这种方法,我参与活动中,最后展示这种图形结合的方法。)

【设计意图】用富有生活问题的情境,激发学习兴趣。探究学习是新一轮基础教育课程改革所倡导的学习方式。在教学中,创设一种情境,通过学生自主发现问题,获得能力发展和深层次的情感体验。渗透数学归纳思想,体现方法的多样化,个性化。

(四)解决问题 深化理解

在列举法的基础上,发现特殊关系的两个数的最小公倍数的规律。由一道生活问题结束本课。(课件出示一道生活情境题)

【设计意图】数学教育的出发点和归宿都应当是学生熟悉的现实生活。学生得到抽象化的数学知识之后,应及时把它们应用到新的现实问题中去。

《最小公倍数》教案2

设计说明

1.从学生已有的知识经验出发,促进知识的构建。

本设计从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的时间和空间。利用数轴引出公倍数,让 ……此处隐藏13666个字……

3,培养学生的抽象,概括能力。

4,培养学生良好的的学习习惯及与人合作的能力。

教学过程:

课前谈话:同学们,每周的七天中,你最喜欢哪一天老师最喜欢的是星期五,因为一周就要结束了,在这一周中认认真真地完成了各项任务,心里是充实的,是踏实的,接下来的两天就要休息了,心里又是轻松的

在生活原型中丰富表象。

导入话题。

在学校里,我们是上五天课休息两天,你的父母也是这样上班和休息的吗如果不是,谁来说说我认识一位小朋友明明,他的爸爸,妈妈因为工作需要,妈妈每3天休息一天,爸爸每5天休息一天,三月份的最后一天他的爸爸,妈妈都休息了,四月份的时候他们分别会在哪些天休息呢

出示四月份的.日历表。

先指名找出妈妈的前4个休息日,再引导学生观察休息日形成的数列有什么规律。

学生回答,引导学生用乘法规律继续找明明妈妈的休息日。(板书:妈妈的休息日:3,6,9,12,15,18,21,24,27,30)

4,用同样的方法找出明明爸爸的休息日。(板书:爸爸的休息日:5,10,15,20,25,30)

5,找出两人共同的休息日。

从生活原型中抽象数学知识。

把妈妈的的日进行抽象。

再回忆妈妈的休息日是怎样找的,从而得出妈妈的休息日是3的倍数。将板书中的"妈妈的休息日"替换为"3的倍数"。

指名说3的倍数还有谁有多少在板书上添加省略号。

同理把爸爸的休息日进行抽象。

引出公倍数和最小公倍数。

指名说说3的倍数和5的倍数之间的联系,从而引出公倍数,再让学生举例说明它们的公倍数有多少(板书:3和5的公倍数:15,30…)

介绍3和5的最小公倍数。

把板书知识用下图表示:

3,6,9,12,15,30 5,10,20,18,21,24, … 25…

27…

根据板书总结并板书课题:倍数,公倍数和最小公倍数。

把数学知识应用到生活中去。

出示:

这些同学至少有多少人

做前分析题意:6有一组正好分完,说明总人数是6的倍数;8人一组正好分完,说明总人数是8的倍数。因此,总人数是6和8的公倍数。又因为问的是至少有多少人,所以要找出6和8的最小公倍数。

学生试找,并把找的方法写下来。

反馈找最小公倍数的方法。

学生自学课本上的方法。

师介绍课本上的方法,注意:把每种方法的操作过程讲清,把几种方法进行比较。

2,出示图书角图片,介绍:由于图书数量的限制,每次借书时不能让全班同学一起借,有同学想出了"男生每3天借一次,女生每2天借一次"的办法,这样能解决问题吗

学生发现3和2有公倍数,男,女生还会在同一天借书后,再引导:如果把2和3换成其它的数,行不行是不是每两个数都有公倍数

每个学生任意写两个数,找它们是否有公倍数。

反馈总结:每两个数都有公倍数。

全课小结。

每两个数都有公倍数,并且这些公倍数里面还有很多奥秘,以后我们再来探索。

3的倍数

5的倍数

3的倍数

5的倍数

《最小公倍数》教案15

设计说明

1.充分利用教材中的素材创设情境,让学生在情境中解决问题。

结合具体的生活情境学习,有助于学生获取知识。“铺墙砖”这一生活情境,学生有一定的生活经验,也具有一定的挑战性,能有效地激发学生的学习兴趣,让学生在实践操作中加强思考与探索,经历知识的形成过程。

2.放手让学生自主探究,获取新知。

著名数学家波利亚认为:“学习任何知识的最佳途径是由自己去发现,因为这种发现,理解最深刻,也最容易掌握其中的内在规律、性质和联系。”为了使学生积极主动地参与学习过程,必须引导学生自己去观察,去思考,去探索。本设计直接出示例题,引导学生利用已有的知识经验,经过自主探究和充分的讨论,获取解决问题的方法,在解决问题的过程中,积累经验,提高解决问题的能力。

课前准备

教师准备 PPT课件

学生准备 若干张长3 dm、宽2 dm的卡片

教学过程

⊙创设情境,引入新课

1.引导学生回忆。

师:同学们还记得前面我们学习的给贮藏室铺地砖的例题吗?这节课我们来学习“铺墙砖”的知识。

2.课件出示例3:用一种长3 dm,宽2 dm的墙砖铺一个正方形(用的墙砖必须都是整块),正方形的`边长可以是多少分米?最小是多少分米?

设计意图:在以前学习过的“铺地砖”的基础上创设类似的情境,让学生在实践操作中加强思考与探索,经历知识的形成过程,完成数学建模。

⊙小组合作,解决问题

1.拼一拼。

(1)用长3 dm、宽2 dm的卡片代替墙砖拼正方形。

(2)在印有格子的纸上画出拼成的正方形。边操作边思考:正方形的边长可以是多少分米?最小是多少分米?正方形的边长与墙砖的长和宽有什么关系?

2.说发现。

师:你拼出来了吗?想一想,正方形的边长必须满足什么条件?(正方形的边长必须是2和3的公倍数)

3.解决问题。

师:正方形的边长可以是多少分米?最小是多少分米?(正方形的边长可以是6 dm,12 dm,18 dm,…最小是6 dm)

4.回顾解决“铺墙砖”问题的关键。

把“铺墙砖”问题转化成求公倍数和最小公倍数的问题,也就是铺成的正方形的边长必须是墙砖长和宽的公倍数,铺成的正方形的边长最小是墙砖长和宽的最小公倍数,这样才能保证用的墙砖都是整块。

⊙学习公倍数的应用

1.解决教材72页11题。

爸爸、妈妈和我一起跑步,爸爸跑一圈用3分钟,妈妈跑一圈用4分钟,我跑一圈用6分钟。如果爸爸、妈妈同时起跑,至少多少分钟后两人在起点再次相遇?此题爸爸、妈妈分别跑了多少圈?[学生分组讨论,教师巡视指导,各组汇报:求至少多少分钟后两人在起点再次相遇,就是求3和4的最小公倍数,3和4的最小公倍数是12,也就是至少12分钟后两人在起点再次相遇,此时爸爸跑了12÷3=4(圈),妈妈跑了12÷4=3(圈)]

2.引导学生在组内提出其他数学问题并合作解答,明确求三个数的最小公倍数的方法。

预设

生1:我和爸爸同时起跑,至少多少分钟后我们在起点再次相遇?

(3和6的最小公倍数是6,也就是至少6分钟后我们在起点再次相遇)

生2:我和妈妈同时起跑,至少多少分钟后我们在起点再次相遇?

(4和6的最小公倍数是12,也就是至少12分钟后我们在起点再次相遇)

生3:三人同时起跑,至少多少分钟后三人在起点再次相遇?

《《最小公倍数》教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式