体积数学教案

时间:2025-11-24 16:52:12
体积数学教案

体积数学教案

作为一名专为他人授业解惑的人民教师,就不得不需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。如何把教案做到重点突出呢?以下是小编整理的体积数学教案,仅供参考,希望能够帮助到大家。

体积数学教案1

教学内容:第25~26页,例2、例3及练习四的第3~8题。

教学过程:

一、复习

1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)

2、圆柱体积的计算公式是什么?

指名学生回答,并板书公式:圆柱的体积=底面积高。

二、新课

1、教学圆锥体积的计算公式。

(1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。

(2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

(3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?

(4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?

(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

(5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的 )

板书:圆锥的体积= 圆柱的体积= 底面积高,字母公式:V= Sh

2、教学练习四第3题

(1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?

(2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。

3、巩固练习:完成练习四第4题。

4、教学例3.

(1)出示例3

已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。

(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的'底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上。做完后集体订正。(注意学生最后得数的取舍方法是否正确)

四、巩固练习

1、做练习四的第7题。

学生先独立判断这三句话是否正确,然后全般核对评讲。

2、做练习四的第8题。

(1)引导学生学生思考回答以下问题:

① 这道题已知什么?求什么?

② 求圆锥的体积必须知道什么?

③ 求出这堆煤的体积后,应该怎样计算这堆煤的重量?

(2)让学生做在练习本上,教师巡视,做完后集体订正。

3、做练习四的第6题。

(1)指名学生先后回答下面问题:

① 圆柱的侧面积等于多少?

② 圆柱的表面积的含义是什么?怎样计算?③ 圆柱体积的计算公式是什么?

④ 圆锥的体积公式是什么?

(2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。

五、总结

这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?

板书:

圆柱的体积=底面积高

圆锥的体积= 圆柱的体积= 底面积高

字母公式:V= Sh

教学目的:

1、通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

2、借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

3、通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

教学重点:掌握圆锥体积的计算公式。

教学难点:正确探索出圆锥体积和圆柱体积之间的关系。

体积数学教案2

教学内容:圆柱体积

教学目标:

1、使学生理解和掌握圆柱的体积计算公式,并能根据题里的条件正确地求出圆柱的体积。

2、培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。

教学重点

圆柱体体积的计算.

教学难点

理解圆柱体体积公式的推导过程.

对策:

通过观察实验,理解和掌握圆柱体积计算公式,发展空间观念。

课前准备:圆柱体积演示教具。

教学预设:

 一、复习引新:

1、师:前几天我们学习了什么?

生:圆柱的表面积和侧面积。

师:圆的面积怎样求?

交流得出:圆的面积=圆周率×半径的平方

2、求下面各圆的面积。(只列式,不计算)

r=1cmd=4dmc=6.28m

3、求下列三个立体图形的底面积

(图略)图意:图1:长方体:长6.4厘米,宽2.5厘米

图2:正方体:棱长4厘米

图3:圆柱体:底面直径4.52厘米,高4厘米

4、思考:(1)上面长方体与正方体体积相等吗?为什么?

(2)猜一猜,当圆柱与正方体、长方体底面积、高相等时,圆柱的体积与长正方体的体积相等吗?用什么办法验证呢?

二、新授:探索圆柱体积计算公式

1、同桌交流,启发学生用转化的思考方法。

2、教具操作转化过程,光盘课件演示。

3、提问:从中你发现了什么?

引导学生发现:拼成的长方体体积=底面积×高

圆柱体积=底面积×高

4、学习用字母表达式来表示。

三、实际运用:

1、第26页上试一试:学生独立解答,一人板演。集体校对,说明计算方法。

2、练一练第1题:方法同上。分析校对后提问:这两题都要注意什么?

3、练一练第2题:读题理解:量底面从里面量什么意思?理解体积与容积的区别。再独立解答,校对分析。

4、第27页上练习七第1题:先独立填表,再组织交流。

5、补充:一个圆柱形水桶,底面直径和高都是40厘米。这个水桶能装多少千克水?(1立方分米的水重1千克)

6、补充:一个圆柱形的水桶,底面积是12.56平方分米,高是20厘米,里 ……此处隐藏13634个字……道它的体积是多少?(1立方分米。)棱长是1分米的正方体,它的体积是1立方分米。粉笔盒的体积接近1立方分米。(用1立方分米教具与粉笔盒比较。)

教师让学生用手势比试1立方分米的实际大小。(用两手空抱拳,取1分米高度,其体积大约是1立方分米。)

教师拿出1立方米的棱架教具。

教师:这是棱长1米的正方体,它的体积是多少?(1立方米。)对!棱长是1米的正方体,它的体积是1立方米。

教师把棱架放到教室的一角,让学生看一看1立方米的体积有多大。

教师:1立方米的空间大约可以容纳8名小学生。

教师请8名学生钻进架子里,半蹲着,充满棱架。让全班同学体会1立方米的实际大小。

教师小结:常用的体积单位有立方厘米、立方分米和立方米。立方米是较大的体积单位,立方厘米是较小的体积单位。

教师:我们知道了常用的体积单位。计量一个物体的体积,就要看这个物体含有多少个体积单位。

教师用投影仪出示右图:

教师:右图中的长方体是由4个1立方厘米的小正方体拼成的,它的体积是多少?

指名让学生回答。

教师用投影仪出示教科书第31页“做一做”第2题的图。

教师:这两个图形都是用棱长1厘米的小正方体拼成的。谁能说出它们的体积各是多少?

让学生分别说出每个图形的体积是多少。

三、巩固练习

1.做练一练的第5题。

让学生拿出24个棱长是1厘米的小正方体,摆长方体。摆完以后,请几名摆的长方体形状不同的同学说一说,自己所摆出的长方体的长、宽、高各是多少。然后教师提问。

教师:他们摆的长方体的长、宽、高一样吗?他们摆的长方体的体积是相同的吗?

(启发学生发现大家所摆出的长方体的形状不同,长、宽、高也就不同,但是体积都是相同的。)

教师再提问:这是为什么?(因为这些不同形状的长方体所含有的体积单位是一样的。)

四、小结(略)

五、作业

体积数学教案15

新课程观强调:

教材是一种重要的课程资源,对于学校和教师来说,课程实施更多地应该是如何更好地用教材,而不是简单地教教材。在实际教学中,如何落实这一理念?本人结合圆柱的体积一课谈谈自己的实践与思考。

■ [片段一]

■ 师生共同探究出圆柱的体积计算公式后对公式加以应用。师出示教材例4(苏教版第12册p8):一根圆柱形钢材,底面积是20平方厘米,高是1.5米,它的体积是多少?

■ 由于课前学生已进行了预习,多数学生是按照教材介绍的解法来解答:

■ 1.5米=150厘米 201150=3000(立方厘米)

■ 师:这道题还有其他结果吗?(学生又沉入了深思)不一会儿,另外两种结果纷纷展现:

■ ①20平方厘米=0.002平方米 0.00211.5=0.003(立方米)

■ ②20平方厘米=0.2平方分米 1.5米=15分米 0.2115=3(立方分米)

■ 师:为什么会出现三种结果?

■ 经讨论,学生才明白:从不同的角度去考虑问题,将得到不同的结果。

■ [片断二]

■ 巩固与应用阶段,我将教材练习二中的一个填表题(表1)进行了加工组合呈现给学生这样一个表格(表2)。

■ 表 1

■ 表2

■ 学生填表后,师:观察前两组数据,你想说什么?

■ 学生独立思考后再小组交流,最后汇报。

■ 生1:两个圆柱的高相等,底面积是几倍的关系,体积也是几倍的关系。

■ 生2:两个圆柱的高相等,底面积越大,体积就越大。

■ 师:观察后两组数据,你想说什么?

■ 有了前面的基础,学生很容易说出了后两组的关系。

■ 学生的表述尽管不是很准确完美,但已说出了其中的规律,而这个规律正是解答练习二第17、18题的基础,又为下一单元比例的教学作了提前孕伏。

■ [片段三]

■ 教材的练习中有这样一题:量一个圆柱形茶杯的高和底面直径,算出它可装水多少克?

■ 学生动手测量自备的圆柱形茶杯的有关数据并计算它的体积。

■ 师:水的生命之源。人每天都要饮用一定量的水,请大家课后查阅相关资料,计算自己每天需要饮用几杯水(自己的杯子)才能保证健康,并把自己对水的想法写下来,下节课我们再交流。

■ [教学反思]

■ 精心研究教材是用好教材的基??

■ 教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的`影响,我们在执行教材时不能把它作为一种枷锁,而应作为跳板编者意图与学生实际的跳板。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。

■ 1、挖掘训练空白,及时补白教材。编者在编写教材时,也考虑了地域、学科、时间等因素,留下了诸多空白,我们使用教材时,要深入挖掘其中的训练空白,及时补白教材。[片段一] 中的例题教学,就挖掘出了教材中的训练空白,并没有把教学简单地停留在一种解答方法上,而是在学生预习的基础上引导学生深入思考,在解决问题的过程中体会从不同的角度去考虑问题,将得到不同的结果的道理,从而学会多角度考虑问题,提高解决问题的能力。

■ 2、找出知识联系,大胆重组教材。数学知识具有一定的结构,知识间存在着密切的联系,我们在教学时不能只着眼于本节课的教学,而应找出知识间的内在联系,帮助学生建立一个较为完整知识系统。[片断二]的表1仅帮助学生熟练掌握体积公式,此外无更多的教学价值,而重组后的表2不仅实现了编者的意图,而且为比例的教学作了提前孕伏。走出了数学教学的只见树木,不见森林的点教学的误区。

■ 落实课标理念是用好教材的关键

■ 能否用好教材,关键在于我们的课堂教学是否落实了新课标的理念。关注人是新课程的核心理念。我们的数学教学不能再以学科为中心,而应以学生为出发点和归宿。教材在编写时不可能面面俱到,教师要心里装着学生,使用教材前反复琢磨,怎样的教学才能符合新理念。前两个片段就突破了学科中心和知识中心,走向了学生中心。[片断三]在教材关注学生的基础上向深层发展不仅让学生动手测量,动脑计算,而且让学生在课外展开调查研究;不仅关注知识技能,而且关注了态度、情感和价值观(对生命之源水的自我看法)这一片断的教学,其价值就在于渗透了人文关爱。

■ 学生获得发展是用好教材的标准

■ 有的教师在教学中常常脱离教材,片面追求新课程的形式,而忽略了实质一切为了每一位学生的发展。每个学生在一节课的40分钟里获得最大发展应作为我们用好教材组织教学的追求。本节课紧扣教材,以本为本,着眼学生的发展,无论是知识技能、过程与方法、数学思考还是情感态度价值观,学生都获得了最大发展。

《体积数学教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式