《完全平方公式》教案

时间:2025-12-07 19:05:09
《完全平方公式》教案

《完全平方公式》教案

作为一名专为他人授业解惑的人民教师,就难以避免地要准备教案,编写教案有利于我们科学、合理地支配课堂时间。那么教案应该怎么写才合适呢?以下是小编整理的《完全平方公式》教案,欢迎大家借鉴与参考,希望对大家有所帮助。

《完全平方公式》教案1

一、教材分析

完全平方公式是初中代数的一个重要组成部分,是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,对以后学习因式分解、解一元二次方程、配方法、勾股定理及图形面积计算都有举足轻重的作用。

本节课是继乘法公式的内容的一种升华,起着承上启下的作用。在内容上是由多项式乘多项式而得到的,同时又为下一节课打下了基础,环环相扣,层层递进。通过这节课的学习,可以培养学生探索与归纳能力,体会到从简单到复杂,从特殊到一般和转化等重要的思想方法。

二、学情分析

多数学生的抽象思维能力、逻辑思维能力、数学化能力有限,理解完全平方公式的几何解释、推导过程、结构特点有一定困难。所以教学中应尽可能多地让学生动手操作,突出完全平方公式的'探索过程,自主探索出完全平方公式的基本形式,并用语言表述其结构特征,进一步发展学生的合情推理能力、合作交流能力和数学化能力。

三、教学目标

知识与技能

利用添括号法则灵活应用乘法公式。

过程与方法

利用去括号法则得到添括号法则,培养学生的逆向思维能力。

情感态度与价值观

鼓励学生算法多样化,培养学生多方位思考问题的习惯,提高学生的合作交流意识和创新精神。

四、教学重点难点

教学重点

理解添括号法则,进一步熟悉乘法公式的合理利用.

教学难点

在多项式与多项式的乘法中适当添括号达到应用公式的目的.

五、教学方法

思考分析、归纳总结、练习、应用拓展等环节。

六、教学过程设计

师生活动

设计意图

一.提出问题,创设情境

请同学们完成下列运算并回忆去括号法则.

(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)去括号法则:

去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不改变符合;如果括号前是负号,去掉括号后,括号里的各项都改变符合.

也就是说,遇“加”不变,遇“减”都变.

二、探究新知

把上述四个等式的左右两边反过来,又会得到什么结果呢?

(1) 4+5+2=4+(5+2) (2)4-5-2=4-(5+2)

(3) a+b+c =a+(b+c)(4)a-b+c=a-(b-c)

左边没括号,右边有括号,也就是添了括号,同学们可不可以总结出添括号法则来呢?

(学生分组讨论,最后总结)

添括号法则是:

添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.

也是:遇“加”不变,遇“减”都变.

请同学们利用添括号法则完成下列练习:

1.在等号右边的括号内填上适当的项:

(1)a+b-c=a+( ) (2)a-b+c=a-( )

(3)a-b-c=a-( ) (4)a+b+c=a-( )

判断下列运算是否正确.

(1)2a-b-=2a-(b-) (2)m-3n+2a-b=m+(3n+2a-b)

(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)

总结:添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,所以我们可以用去括号法则验证所添括号后的代数式是否正确.

三、新知运用

有些整式相乘需要先作适当的变形,然后再用公式,这就需要同学们理解乘法公式的结构特征和真正内涵.请同学们分组讨论,完成下列计算.

例:运用乘法公式计算

(1)(x+2y-3)(x-2y+3) (2)(a+b+c)2

(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)

四.随堂练习:

1.课本P111练习

2.《学案》101页——巩固训练

五、课堂小结:

通过本节课的学习,你有何收获和体会?

我们学会了去括号法则和添括号法则,利用添括号法则可以将整式变形,从而灵活利用乘法公式进行计算.

我体会到了转化思想的重要作用,学数学其实是不断地利用转化得到新知识,比如由繁到简的转化,由难到易的转化,由已知解决未知的转化等等.

六、检测作业

习题14.2: 必做题: 3 、4 、5题

选做题:7题

知识梳理,教学导入,激发学生的学习热情

交流合作,探究新知,以问题驱动,层层深入。

归纳总结,提升课堂效果。

作业检测,检测目标的达成情况。

《完全平方公式》教案2

一、学习目标

1.会运用完全平方公式进行一些数的简便运算

二、学习重点

运用完全平方公式进行一些数的简便运算

三、学习难点

灵活运用平方差和完全平方公式进行整式的简便运算

四、学习设计

(一)预习准备

(1)预习书p26-27

(2)思考:如何更简单迅捷地进行各种乘法公式的运算?[

(3)预习作业:1.利用完全平方公式计算

(1)(2) (3)(4)

2.计算:

(1) (2)

(二)学习过程

平方差公式和完全平方公式的逆运用

由 反之

反之

1、填空:

(1)(2)(3)

(4)(5)

(6)

(7)若,则k=

(8)若是完全平方式,则k=

例1计算:1. 2.

现在我们从几何角度去解释完全平方公式:

从图(1)中可以看出大正方形的边长是a+b,

它是由两个小正方形和两个矩形组成,所以

大正方形的面积等于这四个图形的面积之和.

则S= =

即:

如图(2)中,大正方形的边长是a,它的面积是 ;矩形DCGE与矩形BCHF是全等图形,长都是 ,宽都是 , ……此处隐藏16189个字……果是两数的平方和,加上(或减去)两数的积的2倍,两者也仅差一个“符号”不同,运用完全平方公式计算时,要注意:

(1)切勿把此公式与公式 混淆,而随意写成 .

(2)切勿把“乘积项”2ab中的2丢掉.

(3)计算时,要先观察题目是否符合公式的条件.若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算.

三、重点·难点及解决办法

(一)重点

掌握公式的结构特征和字母表示的广泛含义,正确运用公式进行计算.

(二)难点

综合运用平方差公式与完全平方公式进行计算.

(三)解决办法

加强对公式结构特征的`深入理解,在反复练习中掌握公式的应用.

四、课时安排

一课时.

五、教具学具准备

投影仪或电脑、自制胶片.

六、师生互动活动设计

1.让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.

2.引入完全平方公式,让学生用文字概括公式的内容,培养抽象的数字思维能力.

3.举例分析如何正确使用完全平方公式,师生共练完成本课时重点内容.

4.适时练习并总结,从实践到理论再回到实践,以指导今后的解题.

七、教学步骤

(一)明确目标

本节课重点学习完全平方公式及其应用.

(二)整体感知

掌握好完全平方公式的关键在于能正确识别符合公式特征的结构,同时还要注意公式中2ab中2的问题,在解题过程中应多观察、多思考、多揣摩规律.

(三)教学过程

1.计算导入;求得公式

(1)叙述平方差公式的内容并用字母表示;

(2)用简便方法计算

①103×97

②103 × 103

(3)请同学们自编一个符合平方差公式结构的计算题,并算出结果.

学生活动:编题、解题,然后两至三个学生说出题目和结果.

要想用好公式,关键在于辨认题目的结构特征,正确使用公式,这节课我们继续学习“乘

法公式”.

引例:计算 ,学生活动:计算 , ,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式.

或合并为:

教师引导学生用文字概括公式.

方法:由学生概括,教师给予肯定、否定或更正,同时板书.

两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.

【教法说明】

①复习平方差公式,主要是引起回忆,巩固公式;编题在于提高兴趣.

②有了平方差公式的推导过程,学生基本建立起了一些特殊多项式乘法的认识方法,因此推导完全平方公式可以由计算直接得出.

2.结合图形,理解公式

根据图形完成下列问题:

如图:A、B两图均为正方形,(1)图A中正方形的面积为____________,(用代数式表示)

图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为_______________________。

(2)图B中,正方形的面积为____________________,Ⅲ的面积为______________,Ⅰ、Ⅱ、Ⅳ的面积和为____________,用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积_________________。

分别得出结论:

学生活动:在教师引导下回答问题.

【教法说明】利用图形讲解,增强学生对公式的直观理解,以便更好地掌握公式,同时也培养学生数形结合的数学思想。

3.探索新知,讲授新课

(1)引例:计算

教师讲解:在 中,把x看成a,把2y看成b,在 中把2x看成a,把3y看成b,则 、 ,就可用完全平方公式来计算,即

【教法说明】 引例的目的在于使学生进一步理解公式的结构,为运用公式打好基础.

(2)例1 运用完全平方公式计算:

①   ②   ③

学生活动:学生独立在练习本上尝试解题,3个学生板演.

【教法说明】 让学生先模仿公式解题,学生可能会出现一些问题,这也正是学生对公式理解、应用和熟练程度上存在的需要解决的问题,反馈后要紧扣公式,重点讲解,达到解决问题的目的,关于例呈中(3)的计算,可对照公式直接计算,也可变形成 ,然后再进行计算,同时也可训练学生灵活运用学过的知识的能力.

4.尝试反馈,巩固知识

练习一

运用完全平方公式计算:

(1)   (2)   (3)

(4)   (5)   (6)

(7)   (8)   (9)

(l0)

学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要集中解决.

5.变式训练,培养能力

练习二

运用完全平方公式计算:

(l)  (2)  (3)  (4)

学生活动:学生分组讨论,选代表解答.

练习三

(1)有甲、乙、丙、丁四名同学,共同计算,以下是他们的计算过程,请判断他们的计算是否正确,不正确的请指出错在哪里.

甲的计算过程是:原式

乙的计算过程是:原式

丙的计算过程是:原式

丁的计算过程是:原式

(2)想一想, 与 相等吗?为什么?

与 相等吗?为什么?

学生活动:观察、思考后,回答问题.

【教法说明】 练习二是一组数字计算题,使学生体会到公式的用途,也可以激发学生学习兴趣,调动学生的学习积极性,同时也起到加深理解公式的作用.练习三第(l)题实际是课本例4,此题是与平方差公式的综合运用,难度较大.通过给出解题步骤,让学生进行判断,使难度降低,学生易于理解,教师要注意引导学生分析这类题的结构特征,掌握解题方法.通过完成第(2)题使学生进一步理解 与 之间的相等关系,同时加深理解代数中“a”具有的广泛意义.

练习四

运用乘法公式计算:

(l)   (2)

(3)  (4)

学生活动:采取比赛的方式把学生分成四组,每组完成一题,看哪一组完成得快而且准确,每组各派一个学生板演本组题目.

【教法说明】 这样做的目的是训练学生的快速反应能力及综合运用知识的能力,同时也激发学生的学习兴趣,活跃课堂气氛.

(四)总结、扩展

这节课我们学习了乘法公式中的完全平方公式.

引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.

八、布置作业

P133 1,2.(3)(4).

参考答案

略.

《《完全平方公式》教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式